## Description:

isumi是个斐波那契数迷。他是如此的酷爱这个数列，因此他想知道很多关于这个数列的东西，比方说第N个斐波那契数是多少啊、前N项的和是多少啊如何用若干个斐波那契数的和表示一个自然数啊之类之类的。

isumi用望远镜观察到在路上有N只大牛(编号为0,1,…N-1)，第i只大牛所在的位置为(xi,yi)(大牛们不会移动，并且每只大牛都在路、也就是矩形之内)，根据isumi对这些大牛的了解，只要isumi出现在某只大牛的视线范围之内这只大牛就会冲过来问isumi一道神题来虐他，虐完之后该大牛就会心满意足的离开……每只大牛的视力不同，当isumi距离第i只大牛不超过di时就会被这只大牛发现。

500 300 5
250 1 75
250 150 75
250 299 100
100 150 80
400 150 20

1

## AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef double db;
const int INF = 0x3f3f3f3f;
const int maxn = 1e4 + 5;
const db eps = 1e-9;

int Sgn(db Key) {return fabs(Key) < eps ? 0 : (Key < 0 ? -1 : 1);}
int Cmp(db Key1, db Key2) {return Sgn(Key1 - Key2);}
struct Point {db X, Y;};
typedef Point Vector;
Vector operator - (Vector Key1, Vector Key2) {return (Vector){Key1.X - Key2.X, Key1.Y - Key2.Y};}
Vector operator + (Vector Key1, Vector Key2) {return (Vector){Key1.X + Key2.X, Key1.Y + Key2.Y};}
db operator * (Vector Key1, Vector Key2) {return Key1.X * Key2.X + Key1.Y * Key2.Y;}
db operator ^ (Vector Key1, Vector Key2) {return Key1.X * Key2.Y - Key1.Y * Key2.X;}
db GetLen(Vector Key) {return sqrt(Key * Key);}
db DisPointToPoint(Point Key1, Point Key2) {return GetLen(Key2 - Key1);}
struct Line {Point S, T;};
typedef Line Segment;
struct Circle {Point Center; db Radius;};
bool IsCircleInterCircle(Circle Key1, Circle Key2) {return Cmp(DisPointToPoint(Key1.Center, Key2.Center), Key1.Radius + Key2.Radius) <= 0;}

struct Edge {int V, Weight, Next;};

Edge edges[maxn << 4];
int Tot;
int Depth[maxn];
int Current[maxn];

void AddEdge(int U, int V, int Weight, int ReverseWeight = 0) {
}

bool Bfs(int Start, int End) {
memset(Depth, -1, sizeof(Depth));
std::queue<int> Que;
Depth[Start] = 0;
Que.push(Start);
while (!Que.empty()) {
int Cur = Que.front();
Que.pop();
for (int i = Head[Cur]; ~i; i = edges[i].Next) {
if (Depth[edges[i].V] == -1 && edges[i].Weight > 0) {
Depth[edges[i].V] = Depth[Cur] + 1;
Que.push(edges[i].V);
}
}
}
return Depth[End] != -1;
}

int Dfs(int Cur, int End, int NowFlow) {
if (Cur == End || NowFlow == 0) return NowFlow;
int UsableFlow = 0, FindFlow;
for (int &i = Current[Cur]; ~i; i = edges[i].Next) {
if (edges[i].Weight > 0 && Depth[edges[i].V] == Depth[Cur] + 1) {
FindFlow = Dfs(edges[i].V, End, std::min(NowFlow - UsableFlow, edges[i].Weight));
if (FindFlow > 0) {
edges[i].Weight -= FindFlow;
edges[i ^ 1].Weight += FindFlow;
UsableFlow += FindFlow;
if (UsableFlow == NowFlow) return NowFlow;
}
}
}
if (!UsableFlow) Depth[Cur] = -2;
return UsableFlow;
}

int Dinic(int Start, int End) {
int MaxFlow = 0;
while (Bfs(Start, End)) {
for (int i = Start; i <= End; ++i) Current[i] = Head[i];
MaxFlow += Dfs(Start, End, INF);
}
return MaxFlow;
}

bool CheckCircle(Circle Key1, db Key2) {
return Cmp(Key1.Center.Y - Key1.Radius, Key2) <= 0 && Cmp(Key1.Center.Y + Key1.Radius, Key2) >= 0;
}

db L, W;
int N;
Circle Daniel[maxn];

int main(int argc, char *argv[]) {
scanf("%lf%lf%d", &L, &W, &N);
for (int i = 1; i <= N; ++i) scanf("%lf%lf%lf", &Daniel[i].Center.X, &Daniel[i].Center.Y, &Daniel[i].Radius);
GraphInit();
for (int i = 1; i <= N; ++i) AddEdge(i, N + i, 1);
for (int i = 1; i <= N; ++i) {
if (CheckCircle(Daniel[i], 0)) AddEdge(0, i, INF);
if (CheckCircle(Daniel[i], W)) AddEdge(N + i, 2 * N + 1, INF);
}
for (int i = 1; i <= N; ++i) {
for (int j = i + 1; j <= N; ++j) {
if (IsCircleInterCircle(Daniel[i], Daniel[j])) {
}